Новий погляд на роль фосфоміцину в епоху мультирезистентності збудників інфекцій сечової системи
##plugins.themes.bootstrap3.article.main##
Анотація
Сечостатева система – це комплекс органів, які пов’язані між собою анатомічно та фізіологічно. Тому інфекційні хвороби сечових шляхів можуть зачепити сечівник, сечовий міхур та сечовід, нирки та передміхурову залозу.
Інфекції сечовивідних шляхів (ІСШ) характеризуються наявністю бактерій, вірусів, грибів або паразитів у сечовому тракті, які викликають запалення та формують клінічну картину хвороби.
Незважаючи на те, що фосфоміцин – антибіотик з давньою історією, він має унікальні властивості, завдяки яким залишається ефективним засобом антибіотикотерапії ІСШ із стабільно низькими патернами резистентності уропатогенів. Це антибактеріальний препарат із хімічною структурою, що не подібна до інших відомих антибіотиків, та розглядається як вагома альтернатива у лікуванні інфекцій, спричинених мультирезистентними патогенами, має широкий спектр дії щодо грампозитивних і грамнегативних мікроорганізмів, зокрема багатьох резистентних до антибіотиків мікроорганізмів.
Сучасні дані свідчать про здатність проникати у біоплівки уропатогенів, синергічно посилювати транспорт інших антибіотиків всередину бактеріальних клітин, а також про істотне зниження вірулентності патогенів при набутті фосфоміцин-резистентності.
Фосфоміцин має такі переваги, як висока концентрація в сечовивідних шляхах, мінімальний вплив на шлунково-кишкову флору і практична відсутність схильності до формування резистентності.
Сьогодні доведена безпека та ефективність препарату в якості засобу для антибіотикопрофілактики після операцій на нижніх сечових шляхах, трансректальної біопсії передміхурової залози та часто рецидивуючих ІСШ, при лікуванні асимптоматичній бактеріурії та ІСШ під час вагітності, лікуванні хронічного бактеріального простатиту, а також як частини антимікробних заходів при мультирезистентних бактеріальних штамах.
##plugins.themes.bootstrap3.article.details##
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори зберігають авторське право, а також надають журналу право першого опублікування оригінальних наукових статей на умовах ліцензії Creative Commons Attribution 4.0 International License, що дозволяє іншим розповсюджувати роботу з визнанням авторства твору та першої публікації в цьому журналі.
Посилання
Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains-New Strategies for an Old Pathogen. Microorganisms. 2022;10(7):1425. doi: 10.3390/microorganisms10071425.
Bruxvoort KJ, Bider-Canfield Z, Casey JA, Qian L, Pressman A, Liang AS, et al. Outpatient Urinary Tract Infections in an Era of Virtual Healthcare: Trends From 2008 to 2017. Clin Infect Dis. 2020;71(1):100–08. doi: 10.1093/cid/ciz764.
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84. doi: 10.1038/nrmicro3432.
Turner RM, Wu B, Lawrence K, Hackett J, Karve S, Tunceli O. Assessment of Outpatient and Inpatient Antibiotic Treatment Patterns and Health Care Costs of Patients with Complicated Urinary Tract Infections. Clin Ther. 2015;37(9):2037–47. doi: 10.1016/j.clinthera.2015.06.013.
Naber KG, Tirán-Saucedo J, Wagenlehner FME; RECAP group. Psychosocial burden of recurrent uncomplicated urinary tract infections. GMS Infect Dis. 2022;10:01. doi: 10.3205/id000078.
Zahar JR, Lortholary O, Martin C, Potel G, Plesiat P, Nordmann P. Addressing the challenge of extended-spectrum betalactamases. Curr Opin Investig Drugs. 2009;10(2):172–80.
Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol. 2014;5:551. doi: 10.3389/fmicb.2014.00551.
Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–66. doi: 10.1016/S1473-3099(08)70041-0.
Diene SM, Merhej V, Henry M, El Filali A, Roux V, Robert C, et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new «killer bugs» are created because of a sympatric lifestyle. Mol Biol Evol. 2013;30(2):369–83. doi: 10.1093/molbev/mss236.
European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report 2022. Stockholm; 2023. 46 p.
Hoffman PS. Antibacterial Discovery: 21st Century Challenges. Antibiotics (Basel). 2020;9(5):213. doi: 10.3390/antibiotics9050213.
Popovic M, Steinort D, Pillai S, Joukhadar C. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis. 2010;29(2):127–42. doi: 10.1007/s10096-009-0833-2.
Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum betalactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10(1):43–50. doi: 1016/S1473-3099(09)70325-1.
Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15(11):e732–9. doi: 10.1016/j.ijid.2011.07.007.
Candel FJ, Cantón R. Current approach to fosfomycin: From bench to bedside. Enferm Infecc Microbiol Clin (Engl Ed). 2019;37(1):1–3. doi: 10.1016/j.eimc.2018.10.002.
Gardiner BJ, Stewardson AJ, Abbott IJ, Peleg AY. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust Prescr. 2019;42(1):14–9. doi: 10.18773/austprescr.2019.002.
Ruiz Ramos J, Salavert Lletí M. Fosfomycin in infections caused by multidrugresistant Gram-negative pathogens. Rev Esp Quimioter. 2019;32(1):45–54.
Gibney G, Baxevanis AD. Searching NCBI databases using Entrez. Curr Protoc Bioinformatics. 2011;(1):1.3.1–1.3.25. doi: 10.1002/0471250953.bi0103s34.
Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev. 2016;29(2):321–47. doi: 10.1128/CMR.00068-15.
Mothibi LM, Bosman NN, Nana T. Fosfomycin susceptibility of uropathogens at Charlotte Maxeke Johannesburg Academic Hospital. S Afr J Infect Dis. 2020;35(1):173. doi: 10.4102/sajid.v35i1.173.
Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents. 2009;34(2):111–20. doi: 10.1016/j.ijantimicag.2009.03.009.
Shostak MV, Kostev FI, Savchuk RV. The renaissance of fosfomycin in the treatment of urinary tract infections amid the widespread increase in uropathogen resistance: a systemic analysis. Men Health. 2015;52(1):83–92.
Bert F, Lambert-Zechovsky N. Antibiotic resistance patterns in Pseudomonas aeruginosa: an 8-year surveillance study in a French hospital. Int J Antimicrob Agents. 1997;9(2):107–12. doi: 10.1016/s0924-8579(97)00033-2.
Mattioni MV, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol. 2023;13:1178547. doi: 10.3389/fcimb.2023.1178547.
Datta R, Juthani-Mehta M. Nitrofurantoin vs Fosfomycin: Rendering a Verdict in a Trial of Acute Uncomplicated Cystitis. JAMA. 2018;319(17):1771–2. doi: 10.1001/jama.2018.4654.
Caramalli S, Amprimo MC, Cavalli G, Mantelli M, Pollastrelli E, Raiteri F, et al. Effect and pharmacokinetics of netilmicin given as bolus intramuscular administration: an open comparative trial versus amikacin and fosfomycin in elderly patients affected by urinary tract infections. Int J Clin Pharmacol Res. 1991;11(2):55–65.
Reynaert J, Van Eyck D, Vandepitte J. Single dose fosfomycin trometamol versus multiple dose norfloxacin over three days for uncomplicated UTI in general practice. Infection. 1990;18(2):77–9. doi: 10.1007/BF01643432.
Neu HC. Fosfomycin trometamol versus amoxicillin – single-dose multicenter study of urinary tract infections. Chemother. 1990;36(1):19–23.
Naber KG, Thyroff-Friesinger U. Fosfomycin trometamol versus ofloxacin/co-trimoxazole as single dose therapy of acute uncomplicated urinary tract infection in females: a multicentre study. Infection. 1990;18(2):S70–6. doi: 10.1007/BF01643431.
Crocchiolo P. Single-dose fosfomycin trometamol versus multiple-dose cotrimoxazole in the treatment of lower urinary tract infections in general practice. Multicenter Group of General Practitioners. Chemotherapy. 1990;36(1):37–40. doi: 10.1159/000238815.
Harvard DR, O’Dowd TC, Holmes W, Smail J, Slack RC. A comparative double-blind randomised study of single dose fosfomycin trometamol with trimethoprim in the treatment of urinary tract infections in general practice. Chemotherapy. 1990;36(1):34–6. doi: 10.1159/000238814.
Boerema JB, Willems FT. Fosfomycin trometamol in a single dose versus norfloxacin for seven days in the treatment of uncomplicated urinary infections in general practice. Infection. 1990;18(2):S80–8. doi: 10.1007/BF01643433.
de Jong Z, Pontonnier F, Plante P. Single-dose fosfomycin trometamol (Monuril) versus multiple-dose norfloxacin: results of a multicenter study in females with uncomplicated lower urinary tract infections. Urol Int. 1991;46(4):344–8. doi: 10.1159/000282164.
Careddu P, Borzani M, Scotti L, Varotto F, Garlaschi L, Fontana P. Treatment of lower urinary tract infections in children: single dose fosfomycin trometamol versus pipemidic acid. Chemioterapia. 1987;6(4):290–4.
De Cecco L, Ragni N. Urinary tract infections in pregnancy: Monuril singledose treatment versus traditional therapy. Eur Urol. 1987;13(1):108–13. doi: 10.1159/000472874.
Selvaggi FP, Ditonno P, Traficante A, Battaglia M, Di Lorenzo V. Fosfomycin trometamol (Monuril) versus norfloxacin in single dose for adult female uncomplicated UTIs. Multicenter randomized, double-blind study. Chemotherapy. 1990;36(1):31–3. doi: 10.1159/000238813.
Cortés R, Pascual T, Lou Arnal S, Orozco F, Sunyer L. Single oral dose of phosphomycin trometamol versus pipemidic acid and norfloxacin in treating uncomplicated low-level urinary tract infections. Aten Primaria. 1992;10(9):1007–12.
Van Pienbroek E, Hermans J, Kaptein AA, Mulder JD. Fosfomycin trometamol in a single dose versus seven days nitrofurantoin in the treatment of acute uncomplicated urinary tract infections in women. Pharm World Sci. 1993;15(6):257–62. doi: 10.1007/BF01871127.
Elhanan G, Tabenkin H, Yahalom R, Raz R. Single-dose fosfomycin trometamol versus 5-day cephalexin regimen for treatment of uncomplicated lower urinary tract infections in women. Antimicrob Agents Chemother. 1994;38(11):2612–4. doi: 10.1128/AAC.38.11.2612.
Lecomte F, Allaert FA. Le traitement monodose de la cystite par fosfomycine trométamol (MonurilR) : analyse de 15 essais comparatifs portant sur 2048 malades. Médecine Mal Infect. 1996;26(3):338–43.
Bozkurt O, Kara C A.S. Comparison efficacy of single dose fosfomycin with ciprofloxacin in the treatment of urinary tract infection in symptomatic women. Turk Urol Derg. 2008;34:360–2.
Stein GE. Single-dose treatment of acute cystitis with fosfomycin tromethamine. Ann Pharmacother. 1998;32(2):215–9. doi: 10.1345/aph.17227.
Minassian MA, Lewis DA, Chattopadhyay D, Bovill B, Duckworth GJ, Williams JD. A comparison between single-dose fosfomycin trometamol (Monuril) and a 5-day course of trimethoprim in the treatment of uncomplicated lower urinary tract infection in women. Int J Antimicrob Agents. 1998;10(1):39–47. doi: 10.1016/s0924-8579(98)00021-1.
Thoumsin H, Aghayan M, Lambotte R. Single dose fosfomycin trometamol versus multiple dose nitrofurantoin in pregnant women with bacteriuria: preliminary results. Infection. 1990;18(2):94–7. doi: 10.1007/BF01643435.
Sojo-Dorado J, López-Hernández I, Rosso-Fernandez C, Morales IM, Palacios-Baena ZR, Hernández-Torres A, et al. Effectiveness of Fosfomycin for the Treatment of Multidrug Resistant Escherichia coli Bacteremic Urinary Tract Infections: A Randomized Clinical Trial. JAMA Netw Open. 2022;5(1):e2137277. doi: 10.1001/jamanetworkopen.2021.37277.
Krcmery S, Hromec J, Demesova D. Treatment of lower urinary tract infection in pregnancy Int J Antimicrobial Agents. 2001;17:279–82.
Bayrak O, Cimentepe E, Inegöl I, Atmaca AF, Duvan CI, Koç A, et al. Is single-dose fosfomycin trometamol a good alternative for asymptomatic bacteriuria in the second trimester of pregnancy? Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(5):525–9. doi: 10.1007/s00192-006-0190-y.
Estebanez A, Pascual R, Gil V, Ortiz F, Santibáñez M, Pérez BC. Fosfomycin in a single dose versus a 7-day course of amoxicillin-clavulanate for the treatment of asymptomatic bacteriuria during pregnancy. Eur J Clin Microbiol Infect Dis. 2009;28(12):1457–64. doi: 10.1007/s10096-009-0805-6.
Falagas ME, Vouloumanou EK, Togias AG, Karadima M, Kapaskelis AM, Rafailidis PI, et al. Fosfomycin versus other antibiotics for the treatment of cystitis: a meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2010;65(9):1862–77. doi: 10.1093/jac/dkq237.
Roberts MJ, Scott S, Harris PN, Naber K, Wagenlehner FME, Doi SAR. Comparison of fosfomycin against fluoroquinolones for transrectal prostate biopsy prophylaxis: an individual patient-data meta-analysis. World J Urol. 2018;36(3):323–30. doi: 10.1007/s00345-017-2163-9.
Cai T, Tamanini I, Tascini C, Köves B, Bonkat G, Gacci M, et al. Fosfomycin Trometamol versus Comparator Antibiotics for the Treatment of Acute Uncomplicated Urinary Tract Infections in Women: A Systematic Review and Meta-Analysis. J Urol. 2020;203(3):570–8. doi: 10.1097/JU.0000000000000620.
Noreikaite J, Jones P, Fitzpatrick J, Amitharaj R, Pietropaolo A, Vasdev N, et al. Fosfomycin vs. quinolone-based antibiotic prophylaxis for transrectal ultrasound-guided biopsy of the prostate: a systematic review and metaanalysis. Prostate Cancer Prostatic Dis. 2018;21(2):153–60. doi: 10.1038/s41391-018-0032-2.
Richaud C. Le traitement monodose de la cystite non compliquée chez la femme à propos d’un essai fosfomycine trométamol (MonurilR) versus péfloxacine. Médecine Mal Infect. 1995;25(2):154–9.
Huttner A, Kowalczyk A, Turjeman A, Babich T, Brossier C, Eliakim-Raz N, et al. Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women: A Randomized Clinical Trial. JAMA. 2018;319(17):1781–9. doi: 10.1001/jama.2018.3627.
Etani T, Asaoka M, Kondo S, Wachino C, Tomiyama N, Hattori T, et al. Efficacy of fosfomycin in preventing infection after endoscopic combined intrarenal surgery in periods of limited supply of first- and second-generation cephalosporins. Int J Urol. 2022;29(9):977–82. doi: 10.1111/iju.14896.
Kwan ACF, Beahm NP. Fosfomycin for bacterial prostatitis: a review. Int J Antimicrob Agents. 2020;56(4):106106. doi: 10.1016/j.ijantimicag.2020.106106.
Gian J, Cunha BA. Raoultella planticola chronic bacterial prostatitis with prostatic calcifications: successful treatment with prolonged fosfomycin therapy. Int J Antimicrob Agents. 2016;47(5):414. doi: 10.1016/j.ijantimicag.2016.02.009.
EAU Guidelines. Edn. presented at the EAU Annual Congress. 2023. 84 p.
Yang J, Zhang P, Zhou H, Feng S, Zhang X. Prospective, randomized controlled study of the preventive effect of fosfomycin tromethamine on post-transurethral resection of bladder tumor urinary tract infection. Int J Urol. 2018;25(10):894–5. doi: 10.1111/iju.13719.
Carroll TF, Christie AL, Prokesch BC, Zimmern PE. Fosfomycin Prevents Intravenous Antibiotic Therapy in Women With Recurrent Urinary Tract Infections: A Retrospective Review. Female Pelvic Med Reconstr Surg. 2022;28(2):109–14. doi: 10.1097/SPV.0000000000001083.
Kuiper SG, Dijkmans AC, Wilms EB, Kamerling IMC, Burggraaf J, Stevens J, et al. Pharmacokinetics of fosfomycin in patients with prophylactic treatment for recurrent Escherichia coli urinary tract infection. J Antimicrob Chemother. 2020;75(11):3278–85. doi: 10.1093/jac/dkaa294.
Wu T-H. Treatment of recurrent complicated urinary tract infections in children with vesicoureteral reflux. J Microbiol Immunol Infect. 2016;49(5):717–22.
Ten Doesschate T, van Werkhoven H, Meijvis S, Stalenhoef J, van Zuilen A, de Vries A, et al. Fosfomycin-trometamol for Urinary Tract Infections in Kidney Transplant Recipients. Transplantation. 2019;103(6):1272–6. doi: 10.1097/TP.0000000000002427.
Yamamoto S, Mitsui Y, Ueda Y, Suzuki T, Higuchi Y, Qiu J, et al. Assessment of single-dose regimen for antimicrobial prophylaxis to prevent perioperative infection in urologic surgery. Hinyokika Kiyo. 2008;54(9):587–91.
Hamasuna R, Betsunoh H, Sueyoshi T, Yakushiji K, Tsukino H, Nagano M, et al. Bacteria of preoperative urinary tract infections contaminate the surgical fields and develop surgical site infections in urological operations. Int J Urol. 2004;11(11):941–7. doi: 10.1111/j.1442-2042.2004.00941.x.
Qiao LD, Chen S, Lin YH, Li JX, Hu WG, Hou JP, et al. Evaluation of perioperative prophylaxis with fosfomycin tromethamine in ureteroscopic stone removal: an investigator driven prospective, multicenter, randomized, controlled study. Int Urol Nephrol. 2018;50(3):427–32. doi: 10.1007/s11255-017-1776-7.
Gu HM, Gu JS, Chung HS, Jung SI, Kwon D, Kim MH, et al. Fosfomycin for Antibiotic Prophylaxis in Men Undergoing a Transrectal Prostate Biopsy: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2023;59(5):911. doi: 10.3390/medicina59050911.
Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother. 1991;35(5):791–5. doi: 10.1128/AAC.35.5.791.
Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, et al. mu-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci. 2002;22(12):5100–7. doi: 10.1523/JNEUROSCI.22-12-05100.2002.
Lee YC, Chen PY, Wang JT, Chang SC. Prevalence of fosfomycin resistance and gene mutations in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Resist Infect Control. 2020;9(1):135. doi: 10.1186/s13756-020-00790-x.
Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333–7. doi: 10.1016/j.ijantimicag.2009.11.011.
Díez-Aguilar M, Cantón R. New microbiological aspects of fosfomycin. Rev Esp Quimioter. 2019;32(1):8–18.
De Groote VN, Fauvart M, Kint CI, Verstraeten N, Jans A, Cornelis P, et al. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J Med Microbiol. 2011;60(3):329–36. doi: 10.1099/jmm.0.019703-0.
García P, Arca P, Evaristo SJ. Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrob Agents Chemother. 1995;39(7):1569–73. doi: 10.1128/AAC.39.7.1569.
Kumon H, Ono N, Iida M, Nickel JC. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob Agents Chemother. 1995;39(5):1038–44. doi: 10.1128/AAC.39.5.1038.
Gobernado M. Fosfomycin. Rev Esp Quimioter. 2003;16(1):15–40.
Dámaso D, Moreno-López M, Martínez-Beltrán J. Evolution of sensitivity to fosfomycin in bacteria isolated in 1973, 1974 and 1975 in the Servicio de Microbiologia y Epidemiologia of the «Clinica Puerta de Hierro», Madrid. Chemotherapy. 1977;(1):104–11. doi: 10.1159/000222035.
Philippon A, Arlet G, Lagrange P. Escherichia coli : fréquence de résistance et évolution à divers antibiotiques urinaires dont la fosfomycine en milieu hospitalier (11 816 souches, 1991–1995). Médecine Mal Infect. 1996;26(5):539–41.
Karageorgopoulos DE. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.
Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1–13. doi: 10.1016/j.idc.2013.09.003.
Gagliotti C, Balode A, Baquero F, Degener J, Grundmann H, Gür D, et al. Escherichia coli and Staphylococcus aureus: bad news and good news from the European Antimicrobial Resistance Surveillance Network (EARS-Net, formerly EARSS), 2002 to 2009. Euro Surveill. 2011;16(11):19819. doi: 10.2807/ese.16.11.19819-en.
Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M, Martínez-Ruiz R, et al. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother. 2009;64(4):712–7. doi: 10.1093/jac/dkp288.
Castañeda-García A, Rodríguez-Rojas A, Guelfo JR, Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol. 2009;191(22):6968–74. doi: 10.1128/JB.00748-09.
Raz R. Fosfomycin: an old–new antibiotic. Clin Microbiol Infect. 2012;18(1):4–7. doi: 10.1111/j.1469-0691.2011.03636.x.
Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Rev Esp Quimioter. 2018;31(1):78–100.
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. doi: 10.7573/dic.212527.
Shi J. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PLoS One. 2014;9(12):e113133.
Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8(4):260–71. doi: 10.1038/nrmicro2319.
Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–8. doi: 10.3201/eid1710.110655.
Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol. 2010;59(3):253–68. doi: 10.1111/j.1574-695X.2010.00690.x.
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32. doi: 10.1016/j.ijantimicag.2009.12.011.
Maisnier-Patin S, Andersson DI. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol. 2004;155:360–9.
Ferrara AM, Migliori GB, Piccioni PD, Grassi FA, Colombo ML, Grassi GG. Influence of Experimental Conditions on in vitro Activity of Fosfomycin Trometamol and Emergence of Resistant Variants. New Trends in Urinary Tract Infections. S. Karger AG. 1988:269–83. doi: 10.1159/000414984.
Austin DJ, Anderson RM. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond B Biol Sci. 1999;354(1384):721–38. doi: 10.1098/rstb.1999.0425.
Björkman J, Nagaev I, Berg OG, Hughes D, Andersson DI. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science. 2000;287(5457):1479–82. doi: 10.1126/science.287.5457.1479.
Lorente Garín JA, Placer Santos J, Salvadó Costa M, Segura Alvarez C, Gelabert-Mas A. Antibiotic resistance transformation in community-acquired urinary infections. Rev Clin Esp. 2005;205(6):259–64.
Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012;31(5):695–701. doi: 10.1007/s10096-011-1360-5.
Okazaki M, Suzuki K, Asano N, Araki K, Shukuya N, Egami T, et al. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J Infect Chemother. 2002;8(1):37–42. doi: 10.1007/s101560200004.
Crane JK, Alvarado CL, Sutton MD. Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother. 2021;65(7):e0001321. doi: 10.1128/AAC.00013-21.
Oteo J, Bautista V, Lara N, Cuevas O, Arroyo M, Fernández S, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–63. doi: 10.1093/jac/dkq346.