As of today, no marker for kidney cancer (KC) was discovered. Over the last decade, it was found a few microRNAs demonstrating the aberrant expression in various biological fluids of KC patients. Among of them miR-508-3p is one of the potential KC markers.

The aim of our study was to establish the expression of miR-508-3p in the blood of patients with KC and healthy subjects.

Levels of miR-508-3p were quantified in the blood samples of 67 patients with renal cell carcinoma and 64 controls using real-time PCR. The level of this microRNA appeared significantly lower in KC patients compared to controls. The cut-off level of miR-508-3p in KC is 12.7 relative units. Sensitivity of miR-508-3p level for KC in our study is 82,% and specificity – 89,6%.

In conclusion, miR-508-3p level in blood can be considered as a possible diagnostic marker of kidney cancer.

**Key words:** kidney cancer, microRNA, miR-508-3p, marker.

Widespread use of highly specific tumor markers for cancer screening enables clinicians to detect tumors of different histological nature and localization, as well as to monitor the disease.

Depending on the biological environment in which they are defined, tumor markers can be divided into different groups: tissue, blood and urine markers [1, 4].

Unlike many diseases in oncology, no marker of kidney cancer (KC) was found. Over the past decade, the experts made many attempts to establish the diagnostic value of microRNA expression in kidney tissue, blood and urine of KC patients. Generally accepted, that through convenience in sampling blood and urine are considered as promising test material providing the possibility to use it for markers screening.

Previously, Q. Zhai and colleagues first provided the evidence of the diagnostic value of miR-508-3p as a tissue and blood marker for renal cell carcinoma (RCC). This conclusion was made by analyzing the expression of miR-508-3p in tumor biopsies and blood samples of 10 patients with KC and healthy volunteers. The authors summarized that to establish the true value of miR-508-3p as biomarker for RCC requires further study [13].

We have conducted a pilot study with a similar design and definition of the expression of miR-508-3p in the blood of 28 patients with KC and 27 healthy subjects and found that the expression of this microRNA in KC patients was significantly higher compared to the controls [2]. However, given the small number of patients, these results stimulated us to perform the study with more patients. Results of this study are provided in the present manuscript.

**MATERIALS AND METHODS**

We have collected 67 blood samples from KC patients in the period between 2013–2017. All patients in KC group were diagnosed with kidney cancer verified by the results of preoperative biopsies and/or postoperative histopathological studies. Control samples were taken from 64 persons without CK. The collected samples were stored prior to RNA extraction at -25 °C.

Total RNA was purified from the samples followed by reverse transcription and TaqMan-based real-time PCR to determine the level of miR-508-3p. RNA extraction and microRNA quantification were performed at the Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology NAS of Ukraine. Data were analyzed using statistical methods [6, 12].

**Reverse transcription and real-time PCR**

Reverse transcription was performed using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, USA), specific looped primers for each microRNA and 10 ng of total RNA. Quantitative Real-Time PCR was performed using TaqMan MicroRNA Assays (Applied Biosystems, USA): U6 snRNA (as endogenous control) and hsa-miR-508-3p. Amplification was performed on the 7500 Fast Real-Time PCR (Applied Biosystems, USA). The data were analyzed using software 7500 Fast Real-time PCR (Figure 1) [2].

**Statistical data analysis**

The data were analyzed using the following statistical methods. Kolmogorov-Smirnov test was used to check the normality of data distribution, Levene’s test – to evaluate the
RESULTS AND DISCUSSION

We have found that the values of miR-508-3p levels were normally distributed according to Kolmogorov-Smirnov test (Z=1.364; p=0.068). Results of Levene’s test (L=9.273; p=0.003) indicated that the variances in tested groups are heterogeneous, and to compare the means we have used robust Welch and Brown-Forsythe tests.

Visualization of results are presented in Fig. 2 and table 1. The results of robust (Welch and Brown-Forsythe) tests are presented in Table 2. According to results of both tests, level of miR-508-3p is significantly lower in KC patients compared to controls (p<0.01).

The results of miR-508-3p quantification in the blood of KC patients and controls indicate its high classification ability: the specificity of miR-508-3p for KC is 89.6% and sensitivity – 82.8%. By calculating the Youden index (J = max (sensitivity + specificity)) cut-off value (cut-off) was calculated for the determination of specificity and sensitivity of miR-508-3p as a marker. According to our results, cut-off is 12.3±0.4 in relative units with a sensitivity of 82.8% and specificity of 89.6%.

Given these results and the fact that the level of studied microRNA was significantly lower in KC patients compared to controls, 12.3±0.4 relative units, that is 12.7 relative units higher than 20.1 relative units with a sensitivity of 89.6% and specificity of 82.8%, it is impossible to predict the histological structure of the tumor, and patients need the monitoring of miR-508-3p level over time. The level of miR-508-3p in patient’s blood higher than 20.1 relative units likely indicates a lack of KC.

Studies of recent decade found other microRNAs that could be considered as a marker of kidney cancer. L.M. Wuliken et al. in 2011 reported that miR-1233 is overexpressed in patients with KC [11]. The sensitivity of this marker reaches 77.4%, specificity – 37.6%. M. Redova et al. found that the simultaneous quantification of miR-451 and miR-378 in serum enables detection of KC in patients with sensitivity of 81% and specificity of 83% [8].

H. Tusong et al consider miR-21 and miR-106a as molecular markers for KC, since expression levels of these microRNAs in serum of KC patients significantly differs from that in controls [10].

According to R. Nofech-Mozes et al, higher level of microRNA-194 is a positive prognostic factor in treatment of KC and small renal tumors patients [5].

Diagnostic and prognostic value of miR-21 in patients with KC was investigated by Arezoo Rasti et al. The researchers concluded that this microRNA is involved in apoptosis, proliferation of cancer cells in KC patients, and its expression can be a prognostic factor for the disease [7].

L. Gu et al. found that increased expression of miR-21, miR-1260b, miR-210, miR-100, miR-125b, miR-221, miR-630, and miR-497 is associated with progression of KC in while downregulation of miR-106b, miR-99a, miR-1 826, miR-215, miR-217, miR-187, miR-129-3p, miR-23b, miR-27b and miR-126 is also a sign of worsening prognosis for patients [3].

S. Samaan et al. describe miR-210 as a criterion for survival prognosis of KC patients [9].

In summary, our results and data from other research centers demonstrate that microRNAs are promising markers in the diagnostics of kidney cancer, and some of microRNAs will be validated as KC markers. Although, in order, to validate it, large multi-center studies with multiple patients are required. The further investigation of this problem in Ukraine requires improvement of research facilities in universities and clinics.

CONCLUSIONS

1. miR-508-3p (miR-508-3p) can be considered as a diagnostic marker of kidney cancer in the blood with the specificity of 89.6% and sensitivity of 82.8%.

2. To confirm the diagnostic value of the expression of miR-508-3p kidney cancer should be further multicenter studies involving more patients.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>95% confidence intervals</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney cancer</td>
<td>67</td>
<td>7.5</td>
<td>4.2</td>
<td>5.6</td>
<td>8.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Controls</td>
<td>64</td>
<td>23.8</td>
<td>3.7</td>
<td>20.7</td>
<td>25.3</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Test</th>
<th>Criteria</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welch</td>
<td>54,46</td>
<td>0.01</td>
</tr>
<tr>
<td>Brown-Forsythe</td>
<td>55.28</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Рівень miR-508-3p у крові хворих на рак нирки
О.О. Строй

Станом на сьогодні універсальний маркер раку нирки (РН) відсутній. Протягом останнього десятиліття було встановлено декілька мікроРНК, які демонструють аберантну експресію у різних біологічних середовищах хворих на РН. В якості одного з таких потенційних маркерів розглядається miR-508-3p.
Метою дослідження було встановлення експресії miR-508-3p у сироватці крові хворих на РН та здорових досліджуваних. Після аналізу рівнів експресії miR-508-3p у сироватці крові 67 хворих на РН та 64 здорових досліджуваних встановлено, що рівень експресії зазначеній мікроРНК при РН суттєво нижчий, ніж в контрольній групі. Порогове значення (cut-off) рівня miR-508-3p при РН становить 12,7 у.о.
Чутливість miR-508-3p у діагностиці РН у дослідженні становить 82,8%, специфічність – 89,6%.
Отже, рівень miR-508-3p у крові можна розглядати в якості потенційного діагностичного маркера раку нирки.

Ключові слова: рак нирки, мікроРНК, miRг508г3p, маркер.

Сведения об авторе
Строй Александр Александрович – Национальный медицинский университет имени Данила Галицкого, 79010, г. Львов, ул. Пекарская, 52. E-mail: addictive.signals@gmail.com

REFERENCES